

Covalently Linked Multi-Calixarenes

O. Mogck^{a)}, P. Parzuchowski^{b)}, M. Nissinen^{c)}, V. Böhmer^{a)}*, G. Rokicki^{b)}, K. Rissanen^{c)}

a) Institut für Organische Chemie, Johannes Gutenberg-Universität, J.-J.-Becher-Weg 34, SB1
 D-55099 Mainz, Germany

b) Faculty of Chemistry, Warsaw University of Technology PL-00664 Warsaw, Poland

c) Department of Chemistry, University of Jyväskylä, P.O. Box 35 FIN-40351 Jyväskylä, Finland

Received 20 April 1998; accepted 12 June 1998

Abstract: *ipso*-Nitration of *t*-butyl calix[4]arene tetraethers and subsequent hydrogenation provides an easy access to monoamino calix[4]arenes. Reaction with di- and triacid chlorides leads to various double- and triple-calix[4]arenes. With tetraacid chlorides derived from calix[4]arenes in the *cone*- or *1,3-alternate*-conformations penta-calix[4]arenes are available as molecularly uniform species, which may be regarded as the first generation of calix[4]arene based dendrimers. The structure of the mononitro tetraester derivative, which may serve as a general building block has been confirmed by single crystal X-ray analysis. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

Calixarenes are well defined macrocyclic molecules which are readily available in large quantities and easily modified by chemical reactions. Suitable calixarene derivatives may be used as building blocks for the construction of larger molecules or molecular assemblies. The most elegant approach, the self assembly of complementary or self complementary calixarene derivatives has led to well defined molecular boxes or capsules which are able to include suitable guest molecules. However, due to their reversible formation, self assembled systems may be sensitive to competitive solvents or concentration changes. Hydrogen bonded dimers of tetraurea calix[4] arenes, for instance, which are quantitatively formed in benzene are quantitatively destroyed by the addition of 1 % DMSO.

These problems do not exist in covalently linked systems and numerous double-calixarenes linked via one, two or four bridges at the wide or narrow rim have been described. In recent years also larger molecules consisting of three ^{6,7} or more ^{8,9} calix[4]arene substructures have been synthesised. This covalent connection may involve the narrow (lower) or wider (upper) rim, may consist of one or more bridges between the calixarene units and may lead to linear, branched or macrocyclic structures. For example a rather rigid macrocyclic combination of two calix[4]arenes in the *cone* conformation and two resorcarene derived cavitands, a "holand" has been prepared. A "linear" combination of three calix[4]arenes fixed in the *1,3-alternate* conformation ¹¹ also shows the structural diversity and potential variety.

In comparison to self assembly strategies, where the main difficulty lies in the synthesis of suitably functionalized building block(s), the most difficult step in the connection of calixarenes via covalent links is the final "connecting" step itself, which is prone to "irreversible" side reactions. It requires a clean, definite (clear-cut) reaction which should be possible under mild conditions. This is especially important if macrocyclic compounds should be synthesised under "high dilution". We have chosen the formation of amide bonds, since *p*-amino calixarenes are easily available via *ipso*-nitration and subsequent reduction. While the first rotaxanes with calix[4]arene stoppers have been recently obtained in this way we describe in the following our first steps towards amide linked linked large easily [4] arene based dendrimers.

Results and Discussion

Syntheses

ipso-Nitration of t-butyl calix[4]arene tetraethers has been used to synthesise the corresponding tetranitro compounds¹² in yields of 85%. Under less drastic conditions (treatment of a solution of 1 in CH₂Cl₂

with a mixture of concentrated nitric acid and glacial acetic acid at room temperature) the reaction can be restricted to one phenolic unit and the mononitro compounds 2 are formed more or less exclusively. They can be isolated and purified simply by filtration of the crude reaction mixture over silica gel. Subsequent reduction of the nitro group by catalytic hydrogenation (Raney-Ni, r.t., normal pressure) yields the pure amino derivatives 3, which can be used in further steps usually without additional purification. (Scheme 1).

Of particular interest is **2b** (for its X-ray structure see later), an ideal building block for the construction of branched dendritic oligo calix[4] arenes, since independently it may be "activated" also on the narrow rim by hydrolysis of the ester groups and reaction with SOCl₂.

Scheme 2

The reaction of various diacid chlorides with monoamine 3a was chosen as a model. Double calixarenes 4a-d were obtained directly as analytically pure products (see Scheme 2) in yields of 85% and the triple- (or tri-) calixarene 5 (74%) was prepared in an analogous way from trimesoyl chloride, thus demonstrating that the amino group in 3 can be easily acylated without any indication of sterical hindrance. Compounds of type 4 or 5, in which two (or three) cavities point towards each other, may be useful as host molecules especially if additional ligating groups are introduced through the acid or attached to the p-positions of the calixarenes.

Compounds 4 and 5 can be thoroughly characterised by ¹H and ¹³C NMR which is illustrated for 4b as an example (Fig. 1). The ¹H NMR spectrum shows in the aromatic region a doublet (8.25 ppm) and a triplet (7.99 ppm) for the protons of the bridging pyridine and a singlet (8.59 ppm) for the amide protons. The aromatic protons of the calixarene appear as two doublets (7.05 and 6.98 ppm) and two singlets (6.9 and 6.31 ppm) as expected for calixarenes of the AAAB-type. Moreover in the methylene region (4.6 - 3 ppm) two pairs of doublets can be found for the protons of the bridging methylene groups as well as two triplets for the

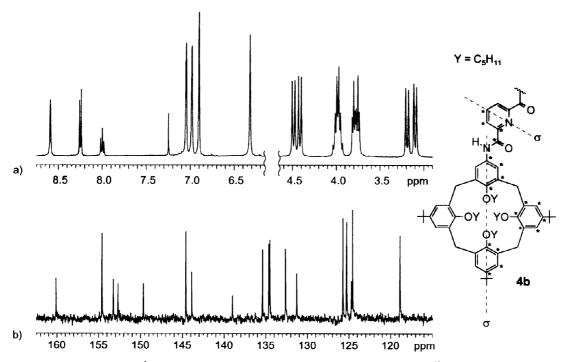


Fig. 1: Sections of the 400 MHz ¹H NMR spectrum (CDCl₃) (a) and section of the 100 MHz ¹³C NMR spectrum (b) of 4b.

protons of the OCH₂-groups lying on the symmetry plane. The diastereotopic protons of the other OCH₂-groups appear as a multiplet (\sim 4 ppm). In the 13 C NMR spectrum 17 signals for the aromatic carbon atoms (155 - 115 ppm) and the signal for the carbonyl carbon atom (160.1 ppm) can be distinguished.

Similarly the ¹H NMR spectrum of the triple-calix[4] arene 5 is in agreement with a molecule with time-averaged C_{3v}-symmetry showing no indication of rotational barriers.

1,3-Diacid chlorides (syn isomer) and tetraacid chlorides (cone isomer) can be easily prepared from t-butyl calix[4]arene (compare the synthesis of 2d, outlined in Scheme 1). Their reaction with monoamines

3a,b leads to triple-calix[4]arenes **6a,b** and to penta-calix[4]arenes **7a-c** in yields of up to 70% in spectroscopically pure form. Similarly, the exo-calix[4]arene **8** derived from **2,4,6-trimethylphenol**¹⁷ can be converted in three steps into the tetraacid chloride **9c**, from which the penta-calix[4]arene **10** can be obtained (Scheme 3). All penta-calix[4]arenes can be completely analysed by ¹H NMR spectra and have been confirmed also by FD- or MALDI-TOF mass spectra.

Fig. 2a shows, as an example, two sections of the ¹H NMR spectrum of **10**, which is in entire agreement with the proposed structure. A more or less unambiguous assignment of all signals is possible in analogy to especially **9a** and **6b**. For the central calixarene unit in the 1,3-alternate conformation we find two singlets for the methyl groups at 2.24 and 1.06 ppm (ratio 2:1) and a broader singlet for the methylene protons (3.89 ppm). The attached O-CH₂-CO-NH group gives a sharp singlet for NH and a somewhat broader singlet for the CH₂ protons (7.99 and 4.04 ppm). The outer calix[4]arenes fixed in the cone conformation have in principle four different aromatic protons which appear as three singlets (ratio 2:1:1) at 7.03, 6.81 and 6.33 ppm. Similarly, the attached O-CH₂-CO arms give rise to three singlets (ratio 2:1:1) at 4.94, 4.61 and 4.57 ppm and the diastereotopicity at two methylene groups (per calix) becomes not evident. As usual two pairs of doublets are found for the axial (4.92 and 4.84 ppm) and equatorial (3.22 and 3.19 ppm) protons of Ar-CH₂-Ar-groups, while the *t*-butyl groups give two sharp singlets (ratio 2:1) at 1.27 and 0.95 ppm. Finally the ethyl groups show three partly superimposed quartets (ratio 1:1:2) between 4.26-4.17 ppm and a multiplet at 1.33-1.24 ppm.

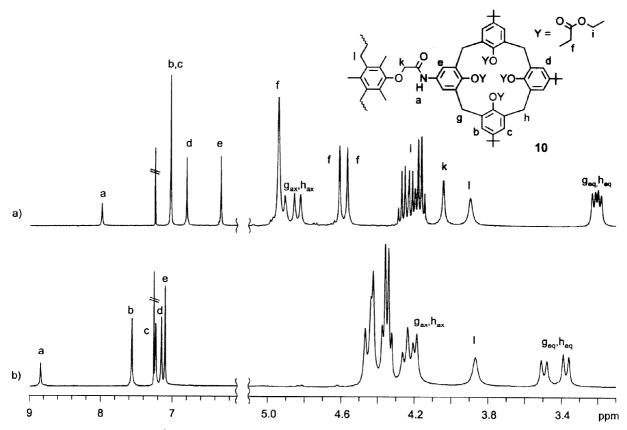


Fig 2.: Section of the 400 MHz ¹H NMR Spectrum (CDCl₃) of 10 (a) and after shaking with NaSCN (b). (The aromatic and the methylene region are shown on different scale.)

Complexation of Sodium Cations

Tetraester derivatives like **1b** are strong and selective ligands for sodium cations. These complexes are usually kinetically stable on the NMR time scale and show characteristic spectroscopic changes with respect to the free ligand. Most important are downfield shifts for the aromatic (+0.34 ppm) and the equatorial methylene protons (+0.61 ppm) and upfield shifts for the -CH₂-CO- (-0.33 ppm) and the axial methylene protons (-0.20 ppm). Fig. 2b shows the ¹H NMR spectrum obtained after shaking a solution of **10** with excess NaSCN. The complexation of Na⁺ is indicated again by strong up- and downfield shifts. All aromatic protons show now chemical shifts > 7.0 ppm, and all O-CH₂-CO-protons of the ester arms appear between 4.4 and 4.5 ppm. The axial methylene protons are downfield shifted to ~4.2 ppm while the equatorial ones are upfield shifted to 3.35 and 3.5 ppm. Finally all quartets of the ethyl groups coincide at ~3.5 ppm.

The entire spectrum again is compatible with a S_4 -symmetrical structure, indicated for instance by a single singlet for NH protons at 8.84 ppm (downfield shifted by 0.85 ppm with respect to free 10). This suggests that all four tetraester units have complexed a Na^+ -cation, unless rapid exchanges average their signals.

Addition of free ligand 10 leads to a spectrum roughly identical with a superposition of the spectra of 10 (Fig. 2a) and its Na⁺-complex (Fig. 2b).²⁰ This clearly demonstrates that the exchange of Na⁺ is, as expected, slow on the NMR time scale.

Single Crystal X-Ray Analysis

Single crystals of **2b** were obtained from chloroform/methanol. Due to the severe disorder and weak scattering power, the R-value and the e.s.d.'s for the bond lengths, bond angles etc. are rather poor, but the conclusions below are entirely justified. All the *t*-butyl groups are rotationally disordered over two positions and were refined isotropically with a population parameter of 0.5. Also one of the ethyl residues (C39 - C40) of the ester moieties is disordered. However, C39 had to be refined isotropically as one atom to obtain a reasonable model for the ester group (thus the resulting temperature factor for C39 is very large). An additional peak in the crystal lattice was treated as a fractional water molecule (occupancy 0.25, H-atoms were not located). Four geometrical restrains were used to keep some parts of the molecule chemically reasonable.

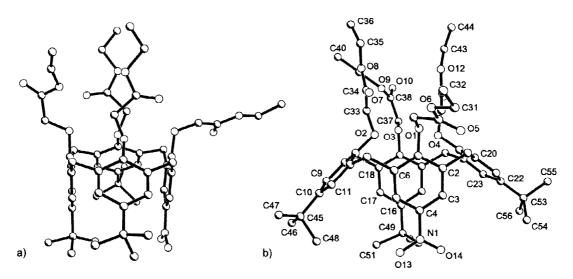


Fig. 3: X-ray structure of compound 2b (two different directions); hydrogen atoms are omitted for clarity.

The molecular structure, the conformation and the numbering scheme of **2b** are shown in Fig. 3. The molecule adopts a pinched cone conformation usually found for tetraethers of calix[4]arenes. The *p*-nitrophenyl ring and its opposite ring are nearly parallel (interplanar angle -7.4°, distance O1 - O3 = 5.58 Å) while the other two rings are nearly perpendicular (interplanar angle 96.1°, distance O2 - O4 = 3.41 Å). The inclinations of the aromatic rings with respect to the best plane through the methylene carbons C25 to C28 (r.m.s. = 0.019 Å) are (in the order O1 to O4): 84.6°, 134.6°, 92.1°, and 141.5°. The X-ray structure, a rare example for tetra-O-alkyl calix[4]arene (*cone* isomer) with the substitution pattern AAAB on the wider rim,

confirms the constitution of 2b, while it reveals a conformation known from many other tetraether derivatives.

Conclusions and Outlook

ipso-Nitration of tetraethers of t-butyl calix[4]arenes and subsequent hydrogenation represents a simple route to monoamino calix[4]arenes, which have been successfully used to synthesise a variety of covalently linked oligo-calix[4]arenes. The penta-calixarenes 7a or 10 may be regarded as a first step towards dendritic structures²¹ with calix[4]arenes as "branching points". Hydrolysis of the 16 ester functions should allow in principle, the attachment of a second generation of 16 calix[4]arenes of type 3 via amide bonds. This connection between the narrow and the wide rim contrasts Shinkai's approach in which calix[4]arenes were linked between their oxygen functions at the narrow rim.

The quantitative transformation of a hexadecaacid into the acid chloride and subsequently into the corresponding amide without side reactions (e.g. hydrolysis) may be difficult as well as difficult to control analytically. An alternative strategy consists in the reduction of 7c which should lead to a stable, analytically characterizable monoamine. Its reaction with tetraacid chlorides like 2d or 9a should yield the desired heneicosa-calix[4]arenes. However, up to now, the hydrogenation of 7c failed for yet unknown reasons and modified reaction conditions (solvent, catalyst) have to be elaborated. As in the preparation of rotaxanes, the controlled synthesis of larger covalently linked systems may be facilitated by the introduction of (flexible) spacer groups between the calixarene units.

Experimental Part

¹H NMR spectra were recorded on a Bruker AC 200 (200 MHz) or AC 400 (400 MHz) spectrometer. Chemical shifts are reported as δ values in ppm relative to (CH₃)₄Si as internal standard. FD-mass spectra were recorded on a Finnigan MAT 8230; MALDI-TOF spectra were measured in the reflectron mode with a Tof Spec E (Micromass) using dithranol (1,8,9-trihydroxyanthracene) as matrix. Melting points reported are uncorrected. Solvents were purified by standard procedures. Compounds 1a and 1b were prepared according to procedures described in the literature. ^{1,12}

11,17,23-Tri-t-butyl-5-nitro-25,26,27,28-tetrapentyloxycalix[4]arene (2a)

To a vigorously stirred solution of compound **1a** (6.4 g, 6.89 mmol) in CH₂Cl₂ (400 mL) a mixture of concentrated nitric acid (10 mL, 140 mmol) and glacial acetic acid (10 mL, 180 mmol) was added. The colour of the reaction mixture immediately turned to dark purple and then to black. Over a period of time (18-24h) the colour of the mixture changed to yellow at which point it was diluted with water. The organic layer was washed with water (3 x 150 mL), dried (Na₂SO₄) and the solvent removed under reduced pressure. The residue is dissolved and filtered over silica (CCl₄ or CHCl₃/n-hexane (1:1)). After removal of the solvent

the recrystallization of the residue from CHCl₃/MeOH yields the pure compound 2a as a white solid (4.81 g, 76 %).

mp 139-140°C; R_f: 0.85 CHCl₃/n-hexane 1:1. ¹H NMR 400 MHz (**CDCl₃**) δ (**ppm**) 7.25 (**s**, 2H, ArH), 7.15 (**d**, 2H, ArH, *J* 2.1 Hz), 7.12 (**d**, 2H, ArH, *J* 2.1 Hz), 6.19 (**s**, 2H, ArH), 4.46 (**d**, 2H, ArCH₂Ar, αx, *J* 12.9 Hz), 4.39 (**d**, 2H, ArCH₂Ar, αx, *J* 12.9 Hz), 4.13-4.06 (m, 2H, OCH₂), 4.01-3.87 (m, 2H, OCH₂), 3.74 (t, 2H, OCH₂, *J* 6.8 Hz), 3.69 (t, 2H, OCH₂, *J* 6.6 Hz), 3.16 (**d**, 2H, ArCH₂Ar, eq, *J* 13.2 Hz), 3.12 (**d**, 2H, ArCH₂Ar, eq, *J* 13.2 Hz), 2.09-1.95 (m, 4H, CH₂), 1.92-1.83 (m, 4H, CH₂), 1.57-1.47 (m, 4H, CH₂), 1.45-1.34 (m, 8H, CH₂), 1.37 (**s**, 18H, CH₃), 1.29-1.21 (m, 4H, CH₂), 0.95 (t, 12H, CH₃, *J* 7.2 Hz), 0.63 (**s**, 9H, CH₃); ¹³C-NMR 100 MHz (**CDCl₃**) δ (**ppm**) 160.8, 154.7, 152.8, 145.4, 144.5, 142.6, 136.3, 135.2, 134.2, 131.9, 126.7, 125.2, 124.5, 123.1, 76.1, 75.5, 75.0, 34.2, 33.2, 31.7, 31.3, 31.2, 30.7, 30.3, 30.1, 29.8, 28.7, 28.5, 28.2, 22.9, 22.7, 22.6, 14.3, 14.0, 13.9. MS (**FD**), m/z 918.3 (M⁺, calc. for C₆₀H₈₇NO₆: 918.4).

11,17,23-Tri-t-butyl-5-nitro-25,26,27,28-tetrakis(ethoxycarbonylmethoxy)calix[4]arene (2b)

A vigorously stirred solution of compound **1b** (5.96 g, 6.0 mmol) in CH₂Cl₂ (300 mL) was cooled in an ice bath to 10°C and fuming nitric acid (1.4 mL, 19.6 mmol) was added. The ice bath was then removed and the reaction mixture allowed to warm to room temperature. The reaction was followed by TLC (acetone/CHCl₃ 2:5) and stopped by the addition of water when compound **1b** completely disappeared (~30 min). (Usually the reaction was complete when the mixture reached room temperature). The organic layer was washed several times with water, dried (NaSO₄) and evaporated under reduced pressure. The residue was purified column chromatography (ethyl acetate/n-hexane 1:3). After removal of the solvents the addition of MeOH yields the pure compound **2b** as white crystals (2.79 g, 47 %).

mp 145-146°C; ¹H NMR 200 MHz (**CDCl₃**) δ (ppm) 7.32 (s, 2H, ArH), 7.08 (bs, 4H, ArH), 6.24 (s, 2H, ArH), 5.06 (d, 2H, ArCH₂Ar, αx, J 13.4 Hz), 5.03 (d, 2H, OCH₂CO, J 19.2 Hz), 4.80 (d, 2H, OCH₂CO, J 19.2 Hz), 4.70 (d, 2H, ArCH₂Ar, αx, J 13.2 Hz), 4.67 (s, 2H, OCH₂CO), 4.51 (s, 2H, OCH₂CO), 4.28-4.10 (m, 8H, COCH₂), 3.23 (d, 2H, ArCH₂Ar, eq, J 13.2 Hz), 3.21 (d, 2H, ArCH₂Ar, eq, J 13.4 Hz), 1.31 (s, 18H, (CH₃)₃), 1.4-1.15 (m, 12H, CH₃), 0.65 (s, 9H, (CH₃)₃). MS (FD) m/z 982.4 (M⁺, calc. for C₅₆H₇₁NO₁₄: 982.18).

11,17,23-Tri-t-butyl-5-nitro-25,26,27,28-tetrakis(hydroxycarbonylmethoxy)calix[4]arene (2c)

A mixture of compound **2b** (0.5g, 0.51 mmol) and NaOH (0. 5g, 12.5 mmol) was refluxed for 12h in ethanol (7 mL) and water (5 mL) and then concentrated to dryness. The residue was dissolved in ethyl acetate washed with 50% H_2SO_4 (2 x 25 mL) and water (4 x 25 mL). The organic layer was dried over MgSO₄ and concentrated to yield 0.44g (98 %) of **2c** as a yellow solid.

mp 232-234°C; ¹H NMR 200 MHz (**CDCl₃**) δ (ppm) 7.52 (s, 2H, ArH), 7.13 (s_b, 4H, ArH), 6.54 (s, 2H, ArH), 4.91-4.40 (m, 12H, OCH₂CO and ArCH₂Ar), 3.34 (d, 2H, ArCH₂Ar, eq, J 14 Hz), 3.27 (d, 2H, ArCH₂Ar, eq, J 14 Hz), 1.28 (s, 18H, (CH₃)₃), 1.31 (s, 9H, (CH₃)₃). MS (FD) m/z 870.3 (M⁺, calc. for C₄₈H₅₅NO₁₄: 869.9).

11,17,23-Tri-t-butyl-5-nitro-25,26,27,28-tetrakis(chlorocarbonylmethoxy)calix[4]arene (2d)

A solution of compound 2c (0.1g, 0.115 mmol) was heated under reflux in $SOCl_2$ (1 mL) for 3h and then evaporated to dryness under reduced pressure yielding quantitatively 2d as a pale yellow solid. Due to the sensitivity of this compound it was just characterised by ¹H NMR 200 MHz (CDCl₃) δ (ppm) 7.30 (s, 2H, ArH), 7.13 (s_b, 4H, ArH), 6.26 (s, 2H, ArH), 5.38 (d, 2 H, OCH₂CO, J 18.8 Hz).

5-Amino-11,17,23-tri-t-butyl-25,26,27,28-tetrapentyloxycalix[4] arene (3a)

Compound 2a (4 g, 4.35 mmol) was dissolved in toluene (300 mL), Raney-Nickel was added (~ 0.5-1 cm³) and the resulting suspension then vigorously stirred under a hydrogen atmosphere at room temperature. When the hydrogen uptake was finished the suspension was rapidly filtered over sand, washed with warm toluene (100 mL) and the combined organic layers dried over Na₂SO₄. After removal of the solvent under reduced pressure the pure compound 3a (3.59 g, 93 %) was obtained as a white solid and stored under argon.

mp 113°C; ¹H NMR 200 MHz (**CDCl₃**) δ (ppm) 7.09 (d, 2H, ArH, *J* 1.9 Hz), 7.0 (d, 2H, ArH, *J* 2 Hz), 6.27 (s, 2H, ArH), 5.68 (s, 2H, ArH), 4.44 (d, 2H, ArCH₂Ar, αx, *J* 12.9 Hz), 4.36 (d, 2H, ArCH₂Ar, αx, *J* 12.7 Hz), 4,01 (t, 4H, OCH₂, *J* 8.3 Hz), 3.73 (t, 2H, OCH₂, *J* 6.6 Hz), 3.61 (t, 2H, OCH₂, *J* 6.8 Hz), 3.11 (d, 2H, ArCH₂Ar, eq, *J* 12.9 Hz), 2.99 (d, 2H, ArCH₂Ar, eq, *J* 12.7 Hz), 2.68 (s_{br}, 2H, NH₂), 2.03 (p, 4H, CH₂, *J* 7.9 Hz), 1.85 (p, 4H, CH₂, *J* 7.1 Hz), 1.33 (s, 18H, CH₃), 0.95 (t, 12H, CH₃, *J* 7 Hz), 0.78 (s, 9H, CH₃); ¹³C-NMR 50 MHz (**CDCl₃**) δ (ppm) 155.1, 153.1, 148.8, 144.3, 143.8, 139.8, 136.1, 135.5, 133.9, 132.3, 125.8, 125.3, 124.6, 114.8, 75.7, 75.5, 75.1, 34.1, 33.5, 31.8, 31.3, 31.2, 31.1, 30.4, 30.3, 29.9, 28.8, 23.1, 22.8, 14.5, 14.1. MS (FD) m/z 887.9 (M⁺, calc. for C₆₀H₈₉NO₄: 888.3).

5-Amino-11,17,23-tri-t-butyl-25,26,27,28-tetrakis(ethoxycarbonylmethoxy)calix[4]arene (3b)

In analogy to the procedure described for compound 2a, the reduction of compound 2b (2 g, 2.04 mmol) yielded compound 3b (1.83g, 94%) as a yellow oil. This compound was just characterised by ¹H NMR 200 MHz (**DMSO-d**₆) δ (ppm) 6.89 (bs, 2H, ArH), 6.80 (bs, 2H, ArH), 6.59 (bs, 4H, ArH), 5.90 (s, 2H, ArH), 4.87-4.48 (m, 12H, OCH₂ and ArCH₂Ar ax), 4.25-4.04 (m, 8H, COCH₂CO), 3.20 (d, 2H, ArCH₂Ar, eq, J 14. Hz), 2.99 (d, 2H, ArCH₂Ar, eq, J 14 Hz), 1.35-1.2 (m, 12H, CH₃), 1.14 (s, 18H, (CH₃)₃), 0.97 (s, 9H, (CH₃)₃).

General procedure for the preparation of compounds 4a-d, 5, 6a,b, 7a-c:

In a typical experiment to a stirred solution of compounds 3a,b (5% excess with respect to the functional groups) in dry dioxane (20 mL) a solution of the corresponding acid chloride in dry dioxane (10 mL) was added. No additional base has to be added in these experiments. Stirring was continued for 6-12 h and then water was added. The solid thus formed was separated by filtration, dissolved in CH₂Cl₂ (50 mL) washed with water (2 x 50 mL) and the organic layer then evaporated. Finally cold methanol was added to precipitate a product which was recrystallized from CHCl₃/MeOH, if necessary, to yield the desired compounds 4a-d, 5, 6a,b, 7a-c.

Double-calixarene 4a: White solid (87 %), mp 290-291°C. ¹H NMR 400 MHz (**CDCl₃**) δ (**ppm**) 7.65 (s, 4H, ArH), 7,09 (d, 2H, ArH, *J* 2.3 Hz), 7.07 (d, 2H, ArH, *J* 2.2 Hz), 6.97 (s, 2H, NH), 6.6 (s, 4H, ArH), 6.21 (s, 4H, ArH), 4.42 (d, 8H, ArCH₂Ar, αx, *J* 12.9 Hz), 4.07-3.97 (m, 8H, OCH₂), 3.71 (t, 4H, OCH₂, *J* 6.7 Hz), 3.67 (t, 4H, OCH₂, *J* 6.9 Hz), 3.12 (d, 4H, ArCH₂Ar, eq, *J* 12.7 Hz), 3.10 (d, 4H, ArCH₂Ar, eq, *J* 13 Hz), 2.11-1.95 (m, 8H, CH₂), 1.91-1.83 (m, 8H, CH₂), 1.55-1.17 (m, 32H, CH₂), 1.33 (s, 36H, CH₃), 0.97-0.91 (m, 24H, CH₃), 0.67 (s, 18H, CH₃); ¹³C-NMR 100 MHz (**CDCl₃**) δ (**ppm**) 163.7, 154.9, 153.2, 152.8, 144.7, 143.6, 138.1, 136.1, 135.1, 134.3, 132.3, 131.3, 126.9, 126.0, 125.4, 124.5, 119.8, 75.7, 75.5, 75.0, 34.1, 33.4, 31.8, 31.3, 31.2, 30.9, 30.3, 30.1, 29.8, 28.7, 28.6, 28.3, 22.9, 22.7, 14.3, 14.1, 14.0. MS (**FD**), m/z 1907.5 (M⁺, calc. for C₁₂₈H₁₈₀N₂O₁₀: 1906.8).

Double-calixarene 4b: White solid (85 %), mp 301-302°C. ¹H NMR 400 MHz (**CDCl₃**) δ (**ppm**) 8.6 (s, 2H, NH), 8.25 (d, 2H, ArH, *J* 7.8 Hz), 7.99 (t, 1H, ArH, *J* 7.8 Hz), 7.06 (s, 4H, ArH), 6.99 (s, 4H, ArH), 6.91 (s, 4H, ArH), 6.32 (s, 4H, ArH), 4.49 (d, 4H, ArCH₂Ar, αx, *J* 12.7 Hz), 4.42 (d, 4H, ArCH₂Ar, αx, *J* 12.7 Hz), 4.04 - 3.93 (m, 8H, OCH₂), 3.81 (t, 4H, OCH₂, *J* 7 Hz), 3.76 (t, 4H, OCH₂, *J* 6.9 Hz), 3.19 (d, 4H, ArCH₂Ar, eq, *J* 12.8 Hz), 3.1 (d, 4H, ArCH₂Ar, eq, *J* 12.9 Hz), 2.11-1.99 (m, 8H, CH₂), 1.98-1.89 (m, 8H, CH₂), 1.57-1.21 (m, 32H, CH₂), 1.24 (s, 36H, CH₃), 0.99-0.95 (m, 24H, CH₃), 0.59 (s, 18H, CH₃). ¹³C-NMR 400 MHz (**CDCl₃**) δ (**ppm**) 160.2, 154.6, 153.3, 152.7, 149.7, 144.6, 143.9, 139.0, 135.4, 134.7, 134.5, 132.7, 131.3, 125.8, 125.3, 124.7, 124.6, 118.9, 75.6, 75.4, 75.2, 33.9, 33.3, 31.7, 31.4, 31.2, 30.8, 30.3, 30.0, 29.9, 28.6, 28.5, 28.3, 22.9, 22.8, 14.3, 14.1. E.A. calc. for C₁₂₇H₁₈₀O₁₀N₃: C,79.94; H,8.39; N, 2.2. found C, 79.84; H, 9.04; N, 2.04. MS (FD) m/z 1908.5 (M⁺, calc. for C₁₂₇H₁₇₉N₃O₁₀: 1907.8).

Double-calixarene 4c: White solid (83 %), mp 264-265°C; 1 H NMR 400 MHz (**CDCl₃**) δ (ppm) 7.99 (s, 1H, ArH), 7.68 (d, 2H, ArH, J 7.7 Hz), 7.46 (t, 1H, ArH, J 7.7 Hz), 7.11 (s, 2H, NH), 7.07 (d, 4H, ArH, J 2.3 Hz), 7.05 (d, 4H, ArH, J 2.2 Hz), 6.67 (s, 4H, ArH), 6.23 (s, 4H, ArH), 4.43 (d, 8H, ArCH₂Ar, αx , J 12.8 Hz), 4,05-3.95 (m_{br}, 8H, OCH₂), 3.73 (t, 4H, OCH₂, J 6.7 Hz), 3.68 (t, 4H, OCH₂, J 7 Hz), 3.13 (d, 4H, ArCH₂Ar, eq, J 12.8 Hz), 3.11 (d, 4H, ArCH₂Ar, eq, J 12.9 Hz), 2.1-1.96 (m, 8H, CH₂), 1.9-1.84 (m, 8H, CH₂), 1.56-1.21 (m, 32H, CH₂), 1.32 (s, 36H, CH₃), 0.97-0.91 (m, 24H, CH₃), 0.69 (s, 18H, CH₃). E.A. calc. for C₁₂₈H₁₈₀O₁₀N₂: C, 80.63; H, 9.51; N, 1.47. found: C, 79.33; H, 9.19; N, 1.26. MS (FD), m/z 1908.9 (M⁺, calc. for C₁₂₈H₁₈₀N₂O₁₀: 1906.8).

Double-calixarene 4d: White solid (69 %), mp 137-139°C. ¹H NMR 400 MHz (**CDCl₃**) δ (ppm) 7.22 (s, 2H, NH), 7.06 (d, 4H, ArH, *J* 2.1 Hz), 7.03 (s_b, 4H, ArH), 6.55 (s, 4H, ArH), 6.25 (s, 4H, ArH), 4.42 (d, 8H, ArCH₂Ar, ax, *J* 12.8 Hz), 4.03-3.98 (m, 8H, OCH₂), 3.89 (s, 4H, OCH₂), 3.73 (t, 4H, OCH₂, *J* 6.9 Hz), 3,69 (t, 4H, OCH₂, *J* 7.1 Hz), 3.11 (d, 8H, ArCH₂Ar, eq, *J* 12.9 Hz), 2.07-1.98 (m, 8H, CH₂), 1.93-1.85 (m, 8H, CH₂), 1.56-1.47 (m, 8H, CH₂), 1.46-1.38 (m, 16H, CH₂), 1.29 (s, 36H, CH₃), 1.32-1.227(m, 8H, CH₂), 0.95 (t, 24H, CH₃, *J* 7.2 Hz), 0.74 (s, 18H, CH₃); ¹³C-NMR 100 MHz (**CDCl₃**) δ (ppm) 164.7, 154.8, 153.2, 152.7, 144.7, 143.6, 135.8, 134.9, 134.4, 132.4, 130.5, 125.9, 125.3, 124.5, 119.3, 75.7, 75.4, 75.0, 71.6, 34.0, 33.4, 31.7, 31.3, 31.2, 30.9, 30.3, 30.1, 29.8, 28.7, 28.6, 28.3, 22.9, 22.7, 14.3, 14.1, 14.0. MS (FD) m/z 1875.7 (M[†], calc. for C₁₂₄H₁₈₀N₂O₁₁: 1874.8).

Triple-calixarene 5: White solid (74 %), mp 206-207°C. 1 H NMR 400 MHz (CDCl₃) δ (ppm) 8.1 (s, 3H, ArH or NH), 7.47 (s_{br}, 3H, ArH or NH), 7.02 (d_{br}, 12H, ArH, J 7.4 Hz), 6.79 (s, 6H, ArH), 6.29 (s, 6H, ArH), 4.44 (d, 12H, ArCH₂Ar, ax, J 12.8 Hz), 4.4-3.95 (m_{br}, 12H, OCH₂), 3.69 (t, 6H, OCH₂, J 6.9 Hz), 3.49 (t, 6H, OCH₂, J 6.9 Hz), 3.13 (d_{br}, 12H, ArCH₂Ar, eq, J 12.9 Hz), 2.04-1.98 (m, 12H, CH₂), 1.95-1.88 (m, 12H, CH₂), 1.55-1.16 (m, 48H, CH₂), 1.29 (s, 54H, CH₃), 0.979-0.937 (m, 36H, CH₃), 0.762 (s, 27H, CH₃); 13 C-NMR 100 MHz (CDCl₃) δ (ppm) 163.2, 154.7, 153.3, 153.1, 144.6, 143.9, 136.6, 135.6, 134.7, 134.4, 132.7, 131.5, 125.9, 125.1, 124.6, 119.7, 75.6, 75.3, 75.1, 34.0, 33.5, 31.8, 31.4, 31.0, 30.3, 30.0, 29.8, 28.7, 28.6, 28.3, 22.9, 22.8, 14.3, 14.1, 14.0. MS (FD) m/z 2822.4 (M⁺, calc. for C₁₈₉H₂₆₇N₃O₁₅: 2821.1).

Triple-calixarene 6a: White solid (78 %), mp 212-214°C. 1 H NMR 400 MHz (CDCl₃) δ (ppm) 9.43 (s, 2H, NH or OH), 8.34 (s, 2H, NH or OH), 7.05-6.98 (broad signals, 12H, ArH), 6.68 (s, 4H, ArH), 6.63 (s, 4H, ArH), 6.59 (s, 4H, ArH), 4.52 (s, 4H, OCH₂), 4.41 (d, 4H, ArCH₂Ar, ax, J 12.5 Hz), 4.39 (d, 4H, ArCH₂Ar, ax, J 12.3 Hz), 4.19 (d, 4H, ArCH₂Ar, ax, J 12.9 Hz), 3.92-3.77 (m, 16H, OCH₂), 3.40 (d, 4H, ArCH₂Ar, eq, J 12.9 Hz), 3.07 (d, 4H, ArCH₂Ar, eq, J 12.7 Hz), 2.99 (d, 4H, ArCH₂Ar, eq, J 12.5 Hz), 2.15-2.04 (m, 4H, CH₂), 2.03-1.92 (m, 12H, CH₂), 1.49-1.32 (m, 32H, CH₂), 1.22 (s, 18H, CH₃), 1.12 (s, 18H, CH₃), 0.98 (s, 18H, CH₃), 0.94 (t, 24H, CH₃, J 6.9 Hz), 0.85 (s, 36H, CH₃). MS (FD) m/z 2502.1 (M⁺, calc. for C₁₆₈H₂₃₄N₂O₁₄: 2505.6).

Triple-calixarene 6b: White solid (81 %), mp 318-320°C. ¹H NMR 400 MHz (CDCl₃) δ (ppm) 9.57 (s, 2H, NH or OH), 8.41 (s, 2H, NH or OH), 7.03 (s, 8H, HAr), 6.99 (s, 4H, HAr), 6.68 (s, 4H, HAr), 6.65 (s, 4H, HAr), 6.57 (s, 4H, HAr), 4.9-4.6 (m, 28H, ArCH₂Ar ax and OCH₂), 4.51(s, 4H, OCH₂), 4.25-4.12 (m, 16H, COCH₂), 3.41 (d, 4H, ArCH₂Ar, eq, J 13.5 Hz), 3.14 (d, 4H, ArCH₂Ar, eq, J 13.3 Hz), 3.04 (d, 4H, ArCH₂Ar, eq, J 12.99 Hz), 1.33-1.22 (m, 24H, CH₃), 1.21 (s, 18H, CH₃), 1.12 (s, 18H, CH₃), 0.96 (s, 18H, CH₃), 0.85 (s, 36H, CH₃). MS (MALDI TOF) m/z 2633.2 (M⁺, calc. for C₁₆₀H₂₀₂N₂O₃₀: 2633.36).

Penta-calixarene 7a: White solid (67 %), mp 201-202°C. ¹H NMR 400 MHz (**CDCl₃**) δ (ppm) 8.06 (s_{br}, 4H, NH), 7.02 (s_{br}, 8H, ArH), 6.75 (s_{br}, 8H, ArH), 6.72 (s_{br}, 8H, ArH), 6.69 (s_{br}, 8H, ArH), 6.59 (s_{br}, 8H, ArH), 4.67 (d, 4H, ArCH₂Ar, *ax*, *J* 12.5 Hz), 4.6 (s, 8H, OCH₂), 4.39 (d, 8H, ArCH₂Ar, *ax*, *J* 12.6 Hz), 4.29 (d, 8H, ArCH₂Ar, *ax*, *J* 12.7 Hz), 3.89-3.69 (m, 32H, OCH₂), 3.19 (d, 4H, ArCH₂Ar, *eq*, *J* 12.6 Hz), 3.07 (d, 8H, ArCH₂Ar, *eq*, *J* 12.9 Hz), 2.96 (d, 8H, ArCH₂Ar, *eq*, *J* 12.8 Hz), 2.07-1.82 (m, 32H, CH₂), 1.51-1.21 (m, 64H, CH₂), 1.07 (s, 36H, CH₃), 1.05 (s, 72H, CH₃), 0.96-0.89 (m, 48H, CH₃), 0.92 (s, 36H, CH₃); ¹³C-NMR 100 MHz (**CDCl₃**) δ (ppm) 167.4, 153.9, 153.8, 153.1, 144.9, 144.2, 144.1, 135.2, 133.9, 133.4, 132.8, 125.6, 125.2, 125.0, 124.9, 119.9, 75.3, 75.1, 33.8, 33.6, 31.6, 31.4, 31.2, 30.0, 29.9, 28.5, 28.4, 28.3, 22.8, 14.2, 14.1. MS (FD) m/z 4359.4 (M⁺, calc. for C₂₉₂H₄₁₂N₄O₂₄: 4362.3).

Penta-calixarene 7b: White solid (60 %), mp 191-193 °C. ¹H NMR 400 MHz (CDCl₃) δ (ppm) 8.00 (s, 4H, NH), 6.99 (s, 8H, HAr), 6.74 (s, 24H, HAr), 6.52 (s, 8H, HAr), 4.87-4.42 (m, 60H, OCH₂ and ArCH₂Ar αx), 4.22-4.05 (m, 32H, COCH₂), 3.22 (d, 4H, ArCH₂Ar, eq, J 12.3 Hz), 3.14 (d, 8H, ArCH₂Ar, eq, J 13.2 Hz), 3.05 (d, 8H, ArCH₂Ar, eq, J 13.2 Hz), 1.31-1.17 (m, 48H, CH₃), 1.05 (s, 144H, CH₃), 0.82 (s, 36H, CH₃). MS (MALDI TOF) m/z 4618.06 (M⁺, calc. for C₂₇₆ H₃₄₈N₄O₅₆: 4617.79).

Penta-calixarene 7c: White solid (75 %), mp 179-180°C. ¹H NMR 400 MHz (CDCl₃) δ (ppm) 9.03 (s, 4H, NH), 7.21-7.12 (m, 12H, HAr), 6.97 (s, 10H, HAr), 6.79 (s, 6H, HAr), 6.56 (s, 6H, HAr), 6.14-6.09 (m, 6H, HAr), 5.07-3.98 (m, 92H, ArCH₂Ar ax and OCH₂ and COCH₂), 3.45 (d, 2H, ArCH₂Ar, eq, J 13Hz), 3.38 (d, 2H, ArCH₂Ar, eq, J 13.5 Hz), 3.2-2.93 (m, 16H, ArCH₂Ar, eq), 1.39 (s, 27H, CH₃), 1.35-1.16 (m, 48H, CH₃), 1.27 (s, 81H, CH₃), 1.05 (s, 18H, CH₃), 0.88 (s, 27H, CH₃), 0.6 (s, 9H, CH₃), 0.43 (s, 9H, CH₃), 0.37 (s, 9H, CH₃). MS (MALDI TOF) m/z 4607 (M⁺, calc. for C₂₇₂H₃₃₉N₅O₅₈: 4606.68).

3,5,7,10,12,14,17,19,21,24,26,28-Dodecamethyl[1.1.1.1]metacyclophane -4,11,18,25-tetrol (8)

A stirred solution of 3-bromomethyl-2,4,6-trimethylphenol (6.87g, 30 mmol) in $EtNO_2$ (100ml) containing a few drops of anhydrous $SnCl_4$ was heated in an oil bath at 60 °C for 6 h under vigorous N_2 stream. The mixture was allowed to stir overnight at room temperature. The solid was collected by filtration and washed with small portions of cold $EtNO_2$. Crude product was recrystallized from aqueous DMF. Yield 1.94g (44%). Spectroscopic data were in agreement with those of the literature.

4,11,18,25-Tetrakis(ethoxycarbonylmethoxy)-3,5,7,10,12,14,17,19,21,24,26,28-dodecamethyl[1.1.1.1]-metacyclophane (9a)

A mixture of compound 8 (0.8 g, 1.35 mmol), potassium carbonate (1.12g, 8.1 mmol) and ethyl bromoacetate (1.2 mL, 10.8 mmol) was refluxed in dry acetone for 5 days. The cooled reaction mixture was filtered and the remaining inorganic salts were washed with CH₂Cl₂. The combined organic layers were evaporated to dryness and the residue recrystallized from CH₂Cl₂/MeOH to yield 0.93 g (74 %) of compound 9a.

mp 230-231°C. ¹H NMR 200 MHz (CDCl₃) δ (ppm) 4.3 (q, 8H, OCH₂CH₃, J 7.2 Hz) 4.26 (s, 8H, OCH₂CO), 3.87 (s, 8H, ArCH₂Ar), 2.31 (s, 24 H, ArCH₃), 1.33 (t, 12H, CH₃, J 7.1 Hz), 1.03 (s, 12H, ArCH₃). MS (FD) m/z 937.7 (M⁺, calc. for C₅₆H₇₂O₁₂: 937.18).

4,11,18,25-Tetrakis(hydroxycarbonylmethoxy)-3,5,7,10,12,14,17,19,21,24,26,28-dodecamethyl[1.1.1.1]-metacyclophane (9b)

A mixture of compound 9a (0.8g, 0.86 mmol) and NaOH (0.85g, 21.3 mmol) was refluxed for 12h in ethanol (13 mL) and water (8.5 mL) and then concentrated to dryness. The residue was dissolved in ethyl acetate washed with 50% H_2SO_4 (2 x 25 mL) and water (4 x 25 mL). The organic layer was dried over MgSO₄ and concentrated to yield 0.67g (94 %) of 9b as a white solid. Spectroscopic data were in agreement with those of the literature.¹⁷

4,11,18,25-Tetrakis(chlorocarbonylmethoxy)-3,5,7,10,12,14,17,19,21,24,26,28-dodecamethyl[1.1.1.1]-metacyclophane (9c)

A mixture of compound **9b** (0.1g, 0.121 mmol) and SOCl₂ (1 mL) in dry toluene (3 mL) was heated under reflux with stirring for 3 hours. The reaction mixture was concentrated to dryness under reduced pressure yielding a white solid which has been used for further reactions without characterisation.

Penta-calixarene 10: To a stirred solution of compound 9c (0.58g, 0.6 mmol) and triethylamine (0.075 mL, 0.53 mmol) in dry THF (20 mL) was added a solution of compound 9d (0.117g, 0.121 mmol) in dry THF (10 mL). Stirring was continued for 48h and the reaction mixture then filtered. The filtrate was evaporated under reduced pressure to dryness. The residue was dissolved in CH₂Cl₂ (50 mL) washed with water (2 x 50 mL) and the organic layer then evaporated and finally cold methanol was added to precipitate a crude product which was recrystallized from CHCl₃/MeOH to yield 0.36g (64 %) of compound 10.

mp 196-198°C. ¹H NMR 400 MHz (**CDCl**₃) δ (ppm) 7.99 (s, 4H, NH), 7.03 (s, 16H, ArH), 6.81 (s, 8H, ArH), 6.33 (s, 8H, ArH), 4.94 (s, 16H, OCH₂CO), 4.92 (d, 8H, ArCH₂Ar, ax, *J* 13.9 Hz), 4.84 (d, 8H, ArCH₂Ar, ax, *J* 13.3 Hz), 4.61 (s, 8H, OCH₂CO), 4.57 (s, 8H, OCH₂CO), 4.26 (q, 8H, COCH₂, *J* 7.2 Hz), 4.22 (q, 8H, COCH₂, *J* 7.2 Hz), 4.17 (q, 8H, COCH₂, *J* 7.1 Hz), 4.04 (s_b, 8H, OCH₂CONH), 3.89 (s_b, 8H, ArCH₂Ar), 3.22 (d, 8H, ArCH₂Ar, *eq*, *J* 13.3 Hz), 3.19 (d, 8H, ArCH₂Ar, *eq*, *J* 13 Hz), 2.24 (s, 24H, ArCH₃), 1.33-1.24 (m, 48H, CH₃), 1.27 (s, 72H, (CH₃)₃), 1.06 (s, 12H, ArCH₃), 0.95 (s, 36H, (CH₃)₃). MS (MALDI TOF) m/z 4559.8 (M⁺, calc. for C₂₇₂H₃₄₀N₄O₅₆: 4561.8).

X-Ray Crystal Structure Analysis

By recrystallization of **2b** from chloroform/methanol, single crystals of the empirical formula $C_{56}H_{71}NO_{14} \times 0.25 H_2O$ were obtained: $M_r = 986.14$, triclinic, space group P-1 (no. 2), a = 14.142(5), b = 14.311(4), c = 15.675(5) Å, $\alpha = 75.80(2)^\circ$, $\beta = 88.05(3)^\circ$, $\gamma = 70.11(3)^\circ$, V = 2888(2) Å³, Z = 2, $D_c = 1.134$ g cm⁻³, F(000) = 1056, $T = 293\pm1$ K. The data were collected from a colourless crystal (0.20 x 0.20 x 0.30 mm) in a capillary tube and recorded with an Enraf-Nonius CAD4 diffractometer using graphite monochromatized MoK $_{\alpha}$ radiation [λ (MoK $_{\alpha}$) = 0.71073 Å] and a ω /2 θ scan mode to $\theta = 25^\circ$ (0 \rightarrow h \rightarrow 16, -15 \rightarrow k \rightarrow 16, -18 \rightarrow 1 \rightarrow 18). Of 10582 collected reflections 10136 were unique ($R_{\rm int} = 0.04$), 10129 reflections [seven excluded as bad reflections, 2809 reflections with $I > 2\sigma(I)$] were used for refinement. Lp correction, μ (MoK $_{\alpha}$) = 0.081 mm⁻¹, no absorption correction was applied. The structure was solved by direct methods (SHELXS-97)²² and refined on F^2 (SHELXL-97)²³ The hydrogen atoms were calculated to their idealised positions with isotropic temperature factors (1.2 or 1.5 times the C temp. factor) and were refined as riding atoms. The final R-values were R = 0.1004, w $R^2 = 0.2524$ [$I > 2\sigma(I)$], R = 0.2724, w $R^2 = 0.3051$ [all data] for 643 parameters: w = 1 / [$\sigma^2(F_o^2)$ + (0.1358 * P)²], where $P = [\max(F_o^2, 0) + 2F_c^2]$ / 3 and GoF = 0.866. A final difference map displayed no electron density higher than 0.63 e.Å⁻³.

The atomic co-ordinates for the structure, as well as bond lengths, bond angles and thermal parameters are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this publication.

Acknowledgement

These studies were supported by the Deutsche Forschungsgemeinschaft, the Scientific & Technological Co-operation between Germany and Poland and the Finnish Academy (project no. 37435).

References and Notes

- 1. For a review on calixarenes see: V. Böhmer, Angew. Chem., Int. Ed. Engl., 1995, 34, 713-745.
- For examples of complementary calixarene assemblies see: a) K. Kok, K. Araki, S. Shinkai, Tetrahedron Lett., 1994, 35, 8255-8258; b) R.H. Vreekamp, W. Verboom, D.N. Reinhoudt, J. Org. Chem. 1996, 61, 4282-4288; c)
 P. Timmermann, R.H. Vreekamp, R. Hulst, W. Verboom, D.N. Reinhoudt, K. Rissanen, K.A. Udachin, J. Ripmeester, Chem. Eur. J., 1997, 119, 3229-3244.
- For examples of self complementary calixarene assemblies see: a) O. Struck, W. Verboom, W.J.J. Smeets, A.L. Spek, D.N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 1997, 223-227; b) A. Arduini, L. Domiano, L. Ogliosi, A. Pochini, A. Secchi, R. Ungaro, J. Org. Chem., 1997, 62, 7866-7868; c) R.G. Chapman, J.C. Sherman, J. Am. Chem. Soc., 1995, 117, 9081-9082; d) B.C. Hamann, K.D. Shimizu, J. Rebek Jr., Angew. Chem., Int. Ed. Engl., 1996, 35, 1326-1329; e) K.D. Shimizu, J. Rebek Jr., Proc. Natl. Acad. Sci. USA, 1995, 92, 12403-12407; f) O. Mogck, E. F. Paulus, V. Böhmer, I. Thondorf, W. Vogt, Chem. Commun., 1996, 2533-2534; g) O. Mogck, M. Pons, V. Böhmer, W. Vogt, J. Am. Chem. Soc., 1997, 5706-5712; h) R.K. Castellano, D.M. Rudkevich, J. Rebek Jr., Proc. Natl. Acad. Sci. USA, 1997, 94, 7132-7137; i) R.K. Castellano, B.H. Kim, J. Rebek Jr., J. Am. Chem. Soc., 1997, 119, 12671-12672.
- 4. This reversible formation, which allows for the intrinsic correction of wrong connections may be considered as a fundamental condition for self-assembly "reactions".
- 5. O. Mogck, V. Böhmer, W. Vogt, Tetrahedron, 1996, 52, 8489-8496.
- For the first macrocyclic triple calix[4]renes see: a) D. Kraft, J.-D. van Loon, M. Owens, W. Verboom, W. Vogt, M.A. McKervey, V. Böhmer, D.N. Reinhoudt, *Tetrahedron Lett.*, 1990, 31, 4941-4944; b) P.D. Beer, A.D. Keefe, A.M.Z. Slawin, D.J. Wiliams, *J. Chem. Soc.*, Dalton Trans., 1990, 3675-3682.
- For examples of triple calixarenes see: a) X. Delaigue, M. W. Hosseini, R. Graff, J.-P. Kintzinger, J. Raya, Tetrahedron Lett., 1994, 35, 1711-1714; b) A. Ikeda, S. Shinkai, J. Chem. Soc., Chem. Commun., 1994, 2375-2378; c) I. Higler, W. Verboom, F.C.J.M. Veggel, F. de Jong, D.N. Reinhoudt, Liebigs Ann./Recueil, 1997, 1577-1586; d) P. Lhotak, M. Kawaguchi, A. Ikeda, S. Shinkai, Tetrahedron, 1996, 52, 12399-12408; e) M.A. McKervey, M. Pitarch, Chem. Commun., 1996, 1689-1690.
- 8. For convenience we will use the expressions double- and triple- but tetra-, penta-calixarenes etc., indicating thus the number of calixarene units per molecule.
- 9. a) P. Lhotak, S. Shinkai, *Tetrahedron*, **1995**, *51*, 7681-7696; b) P. Lhotak, M. Kawaguchi, A. Ikeda, S. Shinkai, *Tetrahedron*, **1996**, *52*, 12399-12408; c) M.A. McKervey, M. Pitarch, *Chemm. Commun.* **1996**, 1689-1690.
- 10. P. Timmermann, W. Verboom, F.C.J.M. van Veggel, W.P. van Hoorn, D.N. Reinhoudt, *Angew. Chem., Int. Ed. Engl.*, **1994**, *33*, 1292-1295.
- 11. A. Ikeda, S. Shinkai, J. Chem. Soc., Chem. Commun., 1994, 2375-2378.
- 12. R.A. Jakobi, V. Böhmer, C. Grüttner, D. Kraft, W. Vogt, New. J. Chem., 1996, 20, 493-501.
- 13. C. Fischer, M. Nieger, O. Mogck, V. Böhmer, R. Ungaro, F. Vögtle, Eur. J. Org. Chem., 1998, 1, 155-161.
- 14. For an amide bridged tetra calix[4] arene based on a calix[4] arene diacid see: M. Jorgensen, M. Larsen, P. Sommer-Larsen, W.B. Petersen, H. Eggert, J. Chem. Soc., Perkin Trans. 1, 1997, 2851-2855.
- 15. For a first example see: W. Verboom, A. Durie, R.J.M. Egberink, Z. Asfari, D.N. Reinhoudt, J. Org. Chem., 1992, 57, 1313-1316.
- 16. For the cooperative complexation of Na⁺ and Γ by a similar double calixarene see: P.D. Beer, J.B. Cooper, *Chem. Commun.*, **1998**, 129-130.
- 17. S. Pappalardo, G. Ferguson, J.F. Gallagher, J. Org. Chem., 1992, 57, 7102-7109.

- 18. A. Arduini, A. Pochini, S. Reverberi, R. Ungaro, G.D. Andreetti, F. Ugozzoli, *Tetrahedron*, 1986, 42, 2089-2100.
- 19. G. Barrett, V. Böhmer, G. Ferguson, J.F. Gallagher, S.J. Harris, R.G. Leonard, M.A. McKervey, M. Owens, M. Tabatabai, A. Vierengel, W. Vogt, J. Chem. Soc., Perkin Trans. 2, 1992, 1595-1601.
- 20. An exact summation of the spectra in Figs. 2a and 2b cannot be expected, since in addition to 10 and its tetra sodium complex all kinds of partial complexes should exist in a solution which is not "saturated" with Na⁺. This is evidenced for instance by amide signals in the range of 8.92-8.72 ppm in addition to the signal at 8.84 ppm found for 10.
 - The observed spectra demonstrate, however, that the spectroscopic properties of the outer calix[4]arenes are nearly independent from each other.
- 21. For the use of calix[4]arenes as cores for dendrimers see also: G. Ferguson, J.F. Gallagher, M.A. McKervey, E. Madigan, J. Chem. Soc., Perkin Trans. 1, 1996, 599-602.
- 22. G.M. Sheldrick, Acta Cryst. 1990, A46, 467.
- 23. G.M. Sheldrick, SHELXL-97 A program for crystal structure refinement, 1997, University of Göttingen, Germany.